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1. Phys. A. Math. Gen. 27 (1994) 7035-7046. Printed in the UK 

On the frequency count for a random walk with absorbing 
boundaries: a carcinogenesis example. I 

M A El-Shehawey 
oepartment of Mathematics, Damietta Faculty of Science, New Damiem, Egypt 

Received 23 March 1994, in final form 2 August 1994 

Ahtract. A non-homogeneous random walk on non-negative integers with transition 
probabilities mi = Sa;, PN! = 6 ~ i .  P i , i+~  = A;, p + ~  = ~ r i ,  and pr i  = pi. hi +pi + pi = 1. 
is studied. In particular, when the transition probabilities are independent of position, a general 
expression for the joint probability generating function (IFGF) of the frequency aunt  of the 
stages 1,2, . . . N - 1 is derived. The appropriate marginal forms of this IPCF yield the POF of the 
frequency count at any pair of stages, and at any p ~ c u l a r  single stage, Some moment formulae 
associated with the hequency aunt are derived. A random walk conditional on absorption at a 
spified boundary js also considered. The random walk model proposed is eminently suitable 
for the example of carcinogenesis. 

1. Introduction 

Random walks with absorbing boundaries provide a natural model for a wide variety of 
phenomena that arise in medicine and biology. In this paper a random walk model of 
the phenomenon of carcinogenesis (see Bell (I976), and Beyer and Waterman (1979) and 
references cited there) is considered. 

A tumour is an abnormal mass of tissue which is not inflammatory. A cancer tumour is 
usually thought of as arising from one wayward cell that bas lost the ability to control itself. 
A cancer tumour inducing agent is called a carcinogen. In the study of carcinogenesis, a 
hit refers to the interaction between the carcinogen and the normal cell which results in the 
mutation of that normal cell to a cancer cell. The transition of a normal cell to a malignant 
cell need not occur in one hit or one stage. The number of stages is the number of mutations 
required to produce a cancer cell. A mutation is said to occur in a given stage if, during that 
stage, the mutated cell is subject to reproduction, death, further mutation to the next stage, 
etc. The natural model for this problem is a birth and death process with linear growth. This 
model has been extensively studied by many authors, perhaps more for its mathematical 
manageability than its genetic relevance, among which we may mention Bartlett (1960), 
Bharucha-Reid (1960), Gani and Jerwood (1971), Iosifescu and Tauta (1973). Bell (1976). 
Beyer and Waterman (1979). Adomian (1980). Iosifescu (1980), Karlin and Taylor (1984), 
Sumita (1984). Sumita and Masuda (1985). and Asmussen (1987). 

In a multi-stage model one postulates several successive mutations, each producing a 
clone of mutant cells. 

The assumptions made in the random walk model of carcinogenesis are: 
(1) Let {X,;n = 0, 1 , .  . . }  denote the random walk corresponding to the mutation 

(2) The walk starts at stage i E I,+] = (1,2, . . . , N - 11. 
process, and [O, 1, .  . . , N I  denote the number of stages. 
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(3) A step forward implies further mutation to the next stage and a backward step 

(4) The stage 0 represents the stage of complete recovery and stage N denotes the 

(5) The random walk is governed by the one-step transition probability matrix M = (pi ,) .  

implies a move towards recovery. 

completion of the mutation process resulting in malignant cells. 

where 

j = i + l  

j = r  

hi +pi +pi = 1, and poz = 6oi, PNI = 8 ~ i  (see figure 1) 

... ... 4 
. .  

0 1 2 . . ,-1 i i r l  . N-2 N-1 N 

Figure 1. The state diagram of a non.homogene0u.s random walk with absorbing boundaries. 

(6) 41, &, . . . , Z N - I  are random variables denoting the frequency count (total number 
of occurrences) of the stages 1,2, , . ., N - 1. respectively, before entering one or the other 
boundary stage, given the initial stage Xg = i E Z N - I .  

The purpose of this paper is to obtain a general formula for the JPGF of the frequency 
count for the non-homogeneous random walk. The appropriate marginal forms yield the 
PGF of the frequency count at any pair of stages, and at any particular single stage. When 
the spatial homogeneity is present explicit expressions for the corresponding JPGF are given. 
The covariance and the correlation coefficient of the frequency count at any pair of stages 
are calculated. Expressions are deduced for the distribution of a backward stage or a forward 
stage conditioned on hitting one of the boundaries before hitting the other. The probabilities 
conditioned on absorption at the origin of a homogeneous random walk are also given. 

2. The JPGF of the frequency count for the non-homogeneous random walk 

Let Tj j  denote the random variable defined as the number of visits to stage j before eventual 
absorption at one of the boundaries (in other words the frequency count of j ) ,  given the 
starting stage i .  

We introduce the following JPGF of the random variables 41, Ti2.. . . , 
h T i 2  1;-l Gi(Z)=Gi(z~.zz, ..., Z N - I ) = E [ ~  ZZ ... ~ N - 1 1  
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in which the summation extends over all n i ,  “2. . . . . nN-1 such that nj = t + 1, 
where f is interpreted as the number of transitions to either of the boundanes. 

can be derived easily. 
The variables { n i }  can be transformed to ( z n ]  by generating function techniques. The 
resulting equations for the nansform Gi ( Z )  are given by the recursion 

The master equation for the probability pr(& = n x ,  k E 

(2.2) 
zi 

G i ( Z )  = - [ p i G i - ~ ( Z )  +AiGi+i(Z)J i E  IN-^ 
1 - pizi 

subject to the boundary conditions 

Go(Z) = G N ( Z )  = 1. 

The above can be solved systematically, as described in theorem 2.1. 

Theorem 2. I. 

(2.3) 

(2.4) 

where Fm(Z) and Bm(Z)  satisfy the recursion 

m = 2,3, ..., N - 1 (2.5) 

and 

m = 2,3, . . . ~ N - 1. (2.6) 

Proof. 
with 

Formula (2.2) can be reduced from second order to first order as follows: We start 

[fit  + AiGz(Z)I. (2.7) 
z1 G l ( Z )  = - 

1 - PlZl 
Inserting (2.7) into (2.2) immediately leads to 

where 
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Inserting Gz(Z) from (2.8) into (2.2), we obtain 

where 

Proceeding in the same fashion, we obtain 

i E b-1 (2.10) 

where F,,,(Z) satisfies the recursion (2.5). 
Evaluating G N - ~ ( Z )  from (2.10) and inserting the result into (2.2), we deduce that 

(2.11) 

On account of the boundary condition given by (2.3). the expression (2.11) becomes 

Reversing the stages, by setting i = N - k, k E G-1 in (2.10), one finds that 

(2.13) 
1 

G N - ~ - I ( Z )  = 1 - FN-k-I(z) 

N-k-1 

1 - pjzj (1 - FN-k-Z(Z))GN-k(Z) f n ( AN-k-1ZN-k-1 

1 -pN-k-lzN-k-l j=1 

Inserting (2.12) into (2.13), we obtain 

1 

(2.14) 
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where B ~ ( z N - ~ )  = BO = 0. 
Substituting from (2.14) into (2.13), and using the fact that 

we obtain 

(2.15) 

(2.16) 

Iterating further, we obtain (2.4), where &(Z) satisfies the recursion (2.6). 
Many interesting probability generating functions can be derived from theorem 2.1 

through an appropriate choice of the arguments z j ,  j E I N - I .  The next theorem follows 
immediately from (2.4) by setting all the arguments z j  equal to one, except zx and zy .  
Theorem 2.2. The marginal PGF for two of the N - 1 random variables E T ,  E z ,  . . . , F N - I  
(say Ex, Ey) is given by 

(2.17) 
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Corollary 2.1.  The PGF of the total number of visits to stage x, x x ,  is given by 

(2.18) 

where 

(2.19) 

3. The JPGF of the frequency count for the homogeneous random walk 

When spatial homogeneity is present, on setting hi = h, pi = p, pi = p for all i E IN-I, 
into (2.18) we obtain 

where 
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h,(zx) satisfies the following recursion 

It can be readily seen that the solution of (3.2) is given by 

m < x  

where H, (independent of zx) is the solution of the second order recursion 

H m  m < N - x  

(3.3) 

(3.4) 

Equation (3.4) can be solved employing standard methods, and we obtain 

kmt1 - p + I  I 1 
n,=i- 

(* - P)( l  - P)" (A - p)(m + 1)p" 

One then sees from (3.3), (3.5) and (3.6) that 

X 

h = U. 

i ) x , h = p  
(3.7) 
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and 

where yp = AP - p p .  

Theorem 3.1. Let Ai = A, wi = !A and pi = p. i E h-1, where A + p + p = 1 .  Then 

Inserting (3.7) and (3.9) into (3.1), one establishes the next theorem. 

(3.9) 

a i x = l  ( x  . - r ) ( N  ' .  - x )  x > i 
pix + aix = U, - f i r  = A N ,  and = x ( N  - x ) .  0 

Following the line of the proof of theorem 3.1, one establishes the next tkeorem. 

Theorem 3.2. 
of the two dependent random variables Ti, and Tiy ( x ,  y E IN-I) is 

Let Ai = A, pi = I* and pi = p,  i E I N - ] ,  where A + p + p = 1. The JPGF 

ffiO + @ i l Z x  + f f iZZy + (Y i3ZxZy  G i k , ,  z,) = 
a0 + f f l Z X  + f f z z y  + a3z,zy 

(3.10) 
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aO = Y X Y y - x Y N - y ,  aI+aO- Y I Y y Y N - y ,  %+a0 = Y I Y x y N - x ,  cj=oolij = c;=oaj = Y:YNI 
and yp = Ap - @. 

The case y < x may be obtained by interchanging x and y in the above formulae. 
0 

It should be noted that theorem 3.1 follows directly from theorem 3.2 by setting zy  = 1, 

Explicit expressions for the probability mass funciton (PMF) Pr(5, = n,) can be 
calculated by expanding the denominator of (3.9) as a geometric series in (,9zzx/aJ. We 
find 

ai2  + a i 0  = ~ t c ~ i x ,  ai1 + a i 3  = y ~ B i x .  cuz + cuo = Y I W . ~  and 011 +CO -y1&. 

It may be observed from (3.11) that &(Ti, = n,) is g e o m e ~ c  for i = x (since aix = 0 
in this case), and modified geometric for i # x ;  ax does not vanish, since x E I N - I  (see 
Barnett (1964). and El-Shehawey and Trabya (1993)). 

4. The moment formulae for the homogeneous random walk 

We derive some moment formulae associated with the two dependent random variables Ti, 
and C y ,  x ,  y E  IN-^. These formulae are rather straightforward. 

Theorem 4.1. The covariance, Cov(I;,, E?), and the correlation coefficient, Oxy, of Tix 
and Tiy are given by 

and 

where 

a2 + a3 ai2 + ai3  
/g Biy  = 

ail + ai0 

Yl Yl Yi Yl 
Y -  aiy = a1 +a0 ay = - 

Finally, we may complete the discussion by obtaining explicit expressions for the 
dislributiou of a backward step or forward step conditioned by hitting one of the boundaries 
before hitting the other. 

Let rj denote the first passage time to stage j ,  j = 0, N, i.e. 

if X, # j for all n, n = 1.2, ... 
if X, = j for some n = 1,2, . . . . (4.3) 

min(n > 1, X, = j )  
5j  = 
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Then the probabilities, pi(j) ,  j = 0, N ,  for hitting one of the boundaries before hitting the 
other, given the initial position X O  = i ,  (well known results) are 

(4.4) 
AN-% 

f P  17 A = &  

Y N  p i ( N )  = k ( 5 N  < TolxO = i) = k E [ r N - I ]  = 

(see, for example, Feller (1977). Percus (1985), El-Shehawey (1992), and El-Shehawey and 
Trabya (1993)). 

The probabilities for a backward step and forward step conditioned by hitting one of 
the boundaries before hitting the other are given by 

One then sees from (4.4) and (4.5) that 

;(I - p ) ( N  - i - 1) 
h = p ,  j = i + l  I N - i  

and 
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We might observe that (4.6) and (4.7) are invariant under interchange of A and p; also (4.7) 
can be deduced from (4.6) by interchanging A and p, interchanging i - 1 and i + 1 ,  and 
replacing i by N - i .  This invariance implies that, conditional on absorption at N ,  the 
distribution of time to absorption from i E ZN-1 is the same as the distribution of time to 
absorption from N - i conditional on absorption at 0. 

The analogous results for a conditioned random walk with a single absorbing state at 0 
may be immediately obtained as the limiting form of (4.6) when N -+ CO. In this case we 
obtain 

(max(A,p)  A # p ,  j = i - 1  

(4.8) 

5. Concluding remarks 

The random walk with absorbing boundaries considered in this paper is perhaps deceptively 
simple. Whilst the general expression (2.4) for Gi (Z) appears rather complicated in form, it 
is, nevertheless, consistent with intuitive ideas about the form of the IPGF of the total number 
of occurrences up to absorption (see Kemperman (1961), Barnett (1964), and El-Shehawey 
and Trabya (1993)). 

The homogeneous random walk { X n J  conditional on absorption at one of the boundaries 
yields a new non-homogeneous random walk with a state space IO, 1 ,  . . . , NJ and one-step 
transition probabilities: 

In the case I.L < A, formula (4.8) yields a new random walk of the same type in which 
forward and backward probabilities are interchanged. 
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